首页> 外文OA文献 >Deep Reinforcement Learning for De-Novo Drug Design
【2h】

Deep Reinforcement Learning for De-Novo Drug Design

机译:De-Novo药物设计的深度强化学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a novel computational strategy based on deep and reinforcementlearning techniques for de-novo design of molecules with desired properties.This strategy integrates two deep neural networks -generative and predictive -that are trained separately but employed jointly to generate novel chemicalstructures with the desired properties. Generative models are trained toproduce chemically feasible SMILES, and predictive models are derived toforecast the desired compound properties. In the first phase of the method,generative and predictive models are separately trained with supervisedlearning algorithms. In the second phase, both models are trained jointly withreinforcement learning approach to bias newly generated chemical structurestowards those with desired physical and biological properties. In thisproof-of-concept study, we have employed this integrative strategy to designchemical libraries biased toward compounds with either maximal, minimal, orspecific range of physical properties, such as melting point andhydrophobicity, as well as to develop novel putative inhibitors of JAK2. Thisnew approach can find a general use for generating targeted chemical librariesoptimized for a single desired property or multiple properties.
机译:我们提出了一种基于深度和强化学习技术的新颖计算策略,用于对具有所需特性的分子进行从头设计。该策略集成了两个深层神经网络-生成性和预测性-分别进行训练但联合使用以生成具有所需特性的新型化学结构。训练生成模型以产生化学上可行的SMILES,并推导预测模型以预测所需的化合物特性。在该方法的第一阶段,使用监督学习算法分别训练生成模型和预测模型。在第二阶段中,将两种模型与强化学习方法一起进行训练,以将新生成的化学结构偏向具有所需物理和生物学特性的化学结构。在这一概念验证研究中,我们采用了这种整合策略来设计化学文库,这些文库偏向具有最大,最小或特定范围的物理特性(例如熔点和疏水性)的化合物,并开发出新型的JAK2抑制剂。这种新方法可以找到生成针对单个所需特性或多个特性进行优化的目标化学文库的一般用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号